Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Nihon Yakurigaku Zasshi ; 159(2): 112-117, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38432919

RESUMO

While sepsis mortality is reducing in developed countries due to advances in intensive care medicine, morbidity is increasing due to aging and obesity. ICU-acquired weakness (ICU-AW) is a respiratory and limb muscle weakness experienced by many sepsis survivors and is present in 50-75% of sepsis patients. ICU-AW can persist for several years, making reintegration of sepsis survivors difficult and leading to a secondary decrease in long-term survival. Exposure of septic patients to multiple muscle-damaging factors during ICU admission, including hyperglycemia, immobility, mechanical ventilation, administration of muscle relaxants, and administration of steroidal anti-inflammatory drugs, may compound the hyper cytokine, hyper nitric oxide, and hyper oxidative conditions, leading to the development of ICU-AW. However, the pathogenesis of ICU-AW remains unclear, and the pathophysiology of ICU-AW awaits further elucidation to develop therapeutic strategies. Recent ICU-AW studies have also revealed that skeletal muscle itself is a key organ in the inflammatory response and metabolic abnormalities in sepsis. In this article, we review the pathophysiology of skeletal muscle in sepsis and international trends in the development of therapeutic agents based on our research results.


Assuntos
Músculo Esquelético , Sepse , Humanos , Envelhecimento , Citocinas , Óxido Nítrico
3.
Yakugaku Zasshi ; 144(3): 251-255, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38432933

RESUMO

Cardiotoxicity induced by anti-cancer drugs is a significant concern for patients undergoing cancer treatment. Some anti-cancer drugs can damage cardiac muscle cells directly or indirectly, potentially leading to severe heart failure. Various risk factors, including the type and dosage of chemotherapy agents as well as patient background, contribute to the development of cardiotoxicity. Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), which enable patient-specific toxicity prediction, hold great promise in this regard. However, the practical implementation of hiPSC-CMs-based prediction of anti-cancer drug-induced cardiotoxicity still faces hurdles. One major challenge involves establishing and optimizing experimental systems for evaluating contractile dysfunction, the ultimate output of heart failure, using hiPSC-CMs. Such efforts are currently underway globally, focusing on tailoring functional evaluation systems to the characteristics of hiPSC-CMs. In this paper, we provide an overview of the contraction mechanisms of cardiac cells and introduce a method of measuring contraction that we have developed, and discuss the current status of contractile function evaluation methods using hiPSC-CMs.


Assuntos
Antineoplásicos , Insuficiência Cardíaca , Células-Tronco Pluripotentes Induzidas , Humanos , Miócitos Cardíacos , Cardiotoxicidade/etiologia
4.
J Pharmacol Sci ; 153(3): 153-160, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37770156

RESUMO

Transporter-mediated clearance is determined by two factors, its single-molecule clearance, and expression level. However, no reliable method has been developed to evaluate them separately. This study aimed to develop a reliable method for evaluating the single-molecule activity of membrane transporters, such as organic anion transporting polypeptide (OATP) 2B1. HEK293 cells that co-expressed large conductance calcium-activated potassium (BK) channel and OATP2B1 were established and used for the following experiments. i) BK channel-mediated whole-cell conductance was measured using patch-clamp technique and divided by its unitary conductance to estimate the number of channels on plasma membrane (QI). ii) Using plasma membrane fraction, quantitative targeted absolute proteomics determined the stoichiometric ratio (ρ) of OATP2B1 to BK channel. iii) The uptake of estrone 3-sulfate was evaluated to calculate the Michaelis constant and uptake clearance (CL) per cell. Single-molecule clearance (CLint) was calculated by dividing CL by QI·ρ. QI and ρ values were estimated to be 916 and 2.16, respectively, yielding CLint of 5.23 fL/min/molecule. We successfully developed a novel method to reliably measure the single-molecule activity of a transporter, which could be used to evaluate the influences of factors such as genetic variations and post-translational modifications on the intrinsic activity of transporters.

5.
Biomolecules ; 11(9)2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34572598

RESUMO

Inhibition of K+-conductance through the human ether-a-go-go related gene (hERG) channel leads to QT prolongation and is associated with cardiac arrhythmias. We previously reported that physiological concentrations of some estrogens partially suppress the hERG channel currents by interacting with the S6 residue F656 and increase the sensitivity of hERG blockade by E-4031. Although these studies suggested that clinically used synthetic estrogens with similar structures have the marked potential to alter hERG functions, the hERG interactions with synthetic estrogens have not been assessed. We therefore examined whether ethinylestradiol (EE2), a synthetic estrogen used in oral contraceptives, affects hERG function and blockade by drugs. Supratherapeutic concentrations of EE2 did not alter amplitudes or kinetics of the hERG currents elicited by train pulses at 20 mV (0.1 Hz). On the other hand, EE2 at therapeutic concentrations reduced the degree of hERG current suppression by E-4031. The administration of EE2 followed by E-4031 blockade reversed the current suppression, suggesting that the interaction of EE2 and E-4031 alters hERG at the drug-binding site. The effects of EE2 on hERG blockade raised the possibility that other estrogens, including synthetic estrogens, can alter hERG blockade by drugs that cause QT prolongation and ventricular arrhythmias.


Assuntos
Congêneres do Estradiol/farmacologia , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Etinilestradiol/farmacologia , Piperidinas/farmacologia , Piridinas/farmacologia , Congêneres do Estradiol/química , Canais de Potássio Éter-A-Go-Go/metabolismo , Etinilestradiol/química , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Piperidinas/química , Piridinas/química
6.
Elife ; 102021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34212860

RESUMO

The development of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) has been a critical in vitro advance in the study of patient-specific physiology, pathophysiology, and pharmacology. We designed a new deep learning multitask network approach intended to address the low throughput, high variability, and immature phenotype of the iPSC-CM platform. The rationale for combining translation and classification tasks is because the most likely application of the deep learning technology we describe here is to translate iPSC-CMs following application of a perturbation. The deep learning network was trained using simulated action potential (AP) data and applied to classify cells into the drug-free and drugged categories and to predict the impact of electrophysiological perturbation across the continuum of aging from the immature iPSC-CMs to the adult ventricular myocytes. The phase of the AP extremely sensitive to perturbation due to a steep rise of the membrane resistance was found to contain the key information required for successful network multitasking. We also demonstrated successful translation of both experimental and simulated iPSC-CM AP data validating our network by prediction of experimental drug-induced effects on adult cardiomyocyte APs by the latter.


Assuntos
Algoritmos , Aprendizado Profundo , Técnicas Eletrofisiológicas Cardíacas , Miócitos Cardíacos/fisiologia , Potenciais de Ação/fisiologia , Diferenciação Celular/fisiologia , Simulação por Computador , Canal de Potássio ERG1/genética , Canal de Potássio ERG1/metabolismo , Fenômenos Eletrofisiológicos/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Modelos Biológicos , Fenetilaminas/farmacologia , Sulfonamidas/farmacologia
7.
Nihon Yakurigaku Zasshi ; 156(4): 207, 2021.
Artigo em Japonês | MEDLINE | ID: mdl-34193696
8.
Nihon Yakurigaku Zasshi ; 156(4): 214-219, 2021.
Artigo em Japonês | MEDLINE | ID: mdl-34193698

RESUMO

Although the cardiotoxicity of anti-cancer drugs is an important issue, the underlying mechanisms remain unknown. To develop a sensitive assay system for cardiotoxicity, we examined effects of anticancer drugs on contractile functions of human iPS cell-derived cardiomyocytes by using non-invasive motion field imaging analysis with extended drug exposure time. We succeeded in continuously measuring stable contractile function. The continued exposure revealed that the difference in cardiotoxicity between cardiotoxic doxorubicin and less toxic erlotinib was more evident after 8 days of treatment than with 3 days of treatment, suggesting that continued exposure improved the predictive power for cardiotoxicity of anti-cancer drugs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Cardiotoxicidade , Células Cultivadas , Doxorrubicina/efeitos adversos , Humanos
9.
J Pharmacol Exp Ther ; 376(3): 454-462, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33376149

RESUMO

The activation of potassium channels and the ensuing hyperpolarization in skeletal myoblasts are essential for myogenic differentiation. However, the effects of K+ channel opening in myoblasts on skeletal muscle mass are unclear. Our previous study revealed that pharmacological activation of intermediate conductance Ca2+-activated K+ channels (IKCa channels) increases myotube formation. In this study, we investigated the effects of 5,6-dichloro-1-ethyl-1,3-dihydro-2H-benzimidazol-2-one (DCEBIO), a Ca2+-activated K+ channel opener, on the mass of skeletal muscle. Application of DCEBIO to C2C12 cells during myogenesis increased the diameter of C2C12 myotubes in a concentration-dependent manner. This DCEBIO-induced hypertrophy was abolished by gene silencing of IKCa channels. However, it was resistant to 1 µM but sensitive to 10 µM TRAM-34, a specific IKCa channel blocker. Furthermore, DCEBIO reduced the mitochondrial membrane potential by opening IKCa channels. Therefore, DCEBIO should increase myotube mass by opening of IKCa channels distributed in mitochondria. Pharmacological studies revealed that mitochondrial reactive oxygen species (mitoROS), Akt, and mammalian target of rapamycin (mTOR) are involved in DCEBIO-induced myotube hypertrophy. An additional study demonstrated that DCEBIO-induced muscle hypertrophic effects are only observed when applied in the early stage of myogenic differentiation. In an in vitro myotube inflammatory atrophy experiment, DCEBIO attenuated the reduction of myotube diameter induced by endotoxin. Thus, we concluded that DCEBIO increases muscle mass by activating the IKCa channel/mitoROS/Akt/mTOR pathway. Our study suggests the potential of DCEBIO in the treatment of muscle wasting diseases. SIGNIFICANCE STATEMENT: Our study shows that 5,6-dichloro-1-ethyl-1,3-dihydro-2H-benzimidazol-2-one (DCEBIO), a small molecule opener of Ca2+-activated K+ channel, increased muscle diameter via the mitochondrial reactive oxygen species/Akt/mammalian target of rapamycin pathway. And DCEBIO overwhelms C2C12 myotube atrophy induced by endotoxin challenge. Our report should inform novel role of K+ channel in muscle development and novel usage of K+ channel opener such as for the treatment of muscle wasting diseases.


Assuntos
Benzimidazóis/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Músculo Esquelético/citologia , Canais de Potássio Cálcio-Ativados/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Canais de Potássio Cálcio-Ativados/química , Transdução de Sinais/efeitos dos fármacos
10.
PLoS Comput Biol ; 16(8): e1008109, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32797034

RESUMO

In the last decade, there has been tremendous progress in identifying genetic anomalies linked to clinical disease. New experimental platforms have connected genetic variants to mechanisms underlying disruption of cellular and organ behavior and the emergence of proarrhythmic cardiac phenotypes. The development of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) signifies an important advance in the study of genetic disease in a patient-specific context. However, considerable limitations of iPSC-CM technologies have not been addressed: 1) phenotypic variability in apparently identical genotype perturbations, 2) low-throughput electrophysiological measurements, and 3) an immature phenotype which may impact translation to adult cardiac response. We have developed a computational approach intended to address these problems. We applied our recent iPSC-CM computational model to predict the proarrhythmic risk of 40 KCNQ1 genetic variants. An IKs computational model was fit to experimental data for each mutation, and the impact of each mutation was simulated in a population of iPSC-CM models. Using a test set of 15 KCNQ1 mutations with known clinical long QT phenotypes, we developed a method to stratify the effects of KCNQ1 mutations based on proarrhythmic markers. We utilized this method to predict the severity of the remaining 25 KCNQ1 mutations with unknown clinical significance. Tremendous phenotypic variability was observed in the iPSC-CM model population following mutant perturbations. A key novelty is our reporting of the impact of individual KCNQ1 mutant models on adult ventricular cardiomyocyte electrophysiology, allowing for prediction of mutant impact across the continuum of aging. This serves as a first step toward translating predicted response in the iPSC-CM model to predicted response of the adult ventricular myocyte given the same genetic mutation. As a whole, this study presents a new computational framework that serves as a high throughput method to evaluate risk of genetic mutations based-on proarrhythmic behavior in phenotypically variable populations.


Assuntos
Canal de Potássio KCNQ1/genética , Modelos Cardiovasculares , Mutação/genética , Miócitos Cardíacos , Arritmias Cardíacas/genética , Biologia Computacional , Predisposição Genética para Doença/genética , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/classificação , Miócitos Cardíacos/citologia
11.
J Pharmacol Sci ; 140(4): 345-349, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31521491

RESUMO

Although the cardiotoxicity of anti-cancer drugs is an important issue, the underlying mechanisms remain unknown. To develop a sensitive assay system for cardiotoxicity, we examined effects of anti-cancer drugs on contractile functions of human iPS cell-derived cardiomyocytes by using non-invasive motion field imaging analysis with extended drug exposure time. We succeeded in continuously measuring stable contractile function. The continued exposure revealed that the difference in cardiotoxicity between cardiotoxic doxorubicin and less toxic erlotinib was more evident after 8 days of treatment than with 3 days of treatment, suggesting that continued exposure improved the predictive power for cardiotoxicity of anti-cancer drugs.


Assuntos
Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Cardiotoxicidade/etiologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Células Cultivadas , Doxorrubicina/efeitos adversos , Doxorrubicina/farmacologia , Cloridrato de Erlotinib/efeitos adversos , Cloridrato de Erlotinib/farmacologia , Humanos , Contração Miocárdica/efeitos dos fármacos
12.
J Physiol ; 597(17): 4533-4564, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31278749

RESUMO

KEY POINTS: Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) capture patient-specific genotype-phenotype relationships, as well as cell-to-cell variability of cardiac electrical activity Computational modelling and simulation provide a high throughput approach to reconcile multiple datasets describing physiological variability, and also identify vulnerable parameter regimes We have developed a whole-cell model of iPSC-CMs, composed of single exponential voltage-dependent gating variable rate constants, parameterized to fit experimental iPSC-CM outputs We have utilized experimental data across multiple laboratories to model experimental variability and investigate subcellular phenotypic mechanisms in iPSC-CMs This framework links molecular mechanisms to cellular-level outputs by revealing unique subsets of model parameters linked to known iPSC-CM phenotypes ABSTRACT: There is a profound need to develop a strategy for predicting patient-to-patient vulnerability in the emergence of cardiac arrhythmia. A promising in vitro method to address patient-specific proclivity to cardiac disease utilizes induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). A major strength of this approach is that iPSC-CMs contain donor genetic information and therefore capture patient-specific genotype-phenotype relationships. A cited detriment of iPSC-CMs is the cell-to-cell variability observed in electrical activity. We postulated, however, that cell-to-cell variability may constitute a strength when appropriately utilized in a computational framework to build cell populations that can be employed to identify phenotypic mechanisms and pinpoint key sensitive parameters. Thus, we have exploited variation in experimental data across multiple laboratories to develop a computational framework for investigating subcellular phenotypic mechanisms. We have developed a whole-cell model of iPSC-CMs composed of simple model components comprising ion channel models with single exponential voltage-dependent gating variable rate constants, parameterized to fit experimental iPSC-CM data for all major ionic currents. By optimizing ionic current model parameters to multiple experimental datasets, we incorporate experimentally-observed variability in the ionic currents. The resulting population of cellular models predicts robust inter-subject variability in iPSC-CMs. This approach links molecular mechanisms to known cellular-level iPSC-CM phenotypes, as shown by comparing immature and mature subpopulations of models to analyse the contributing factors underlying each phenotype. In the future, the presented models can be readily expanded to include genetic mutations and pharmacological interventions for studying the mechanisms of rare events, such as arrhythmia triggers.


Assuntos
Arritmias Cardíacas/fisiopatologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Miócitos Cardíacos/fisiologia , Potenciais de Ação/fisiologia , Doença do Sistema de Condução Cardíaco/fisiopatologia , Simulação por Computador , Humanos , Armazenamento e Recuperação da Informação , Fenótipo
13.
J Pharmacol Sci ; 140(4): 325-330, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31279582

RESUMO

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are a valuable tool to characterize the pharmacology and toxic effects of drugs on heart cells. In particular, hiPSC-CMs can be used to identify drugs that generate arrhythmias. However, it is unclear whether the expression of genes related to generation of CM action potentials differs between hiPSC-CM cell lines and the mature human heart. To address this, we obtained accurate gene expression profiles of commercially available hiPSC-CM cell lines with quantitative real time RT-PCR analysis. Expression analysis of ten cardiac proteins important for generation of action potentials and three cardiac proteins important for muscle contractility was performed using GAPDH for normalization. Comparison revealed large variations in expression levels among hiPSC-CM cell lines and between hiPSC-CMs and normal human heart. In general, gene expression in hiPSC-CM cell lines was more similar to an immature, stem-like cell than a mature cardiomyocyte from human heart samples. These results provide quantitative information about differences in gene expression between hiPSC-CM cell lines, essential for interpreting pharmacology experiments. Our approach can be used as an experimental guideline for future research on gene expression in hiPSC-CMs.


Assuntos
Potenciais de Ação/genética , Expressão Gênica/genética , Células-Tronco Pluripotentes Induzidas/fisiologia , Miócitos Cardíacos/fisiologia , Adulto , Arritmias Cardíacas/genética , Linhagem Celular , Coração/fisiologia , Humanos , Masculino , Contração Muscular/genética
14.
J Pharmacol Sci ; 139(4): 259-265, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30962088

RESUMO

Sex hormones, such as testosterone, progesterone, and 17ß-estradiol, control various physiological functions. This review focuses on the sex hormonal regulation of K+ channels and the effects of such regulation on electrophysiological and contractile functions of muscles. In the cardiac tissue, testosterone and progesterone shorten action potential, and estrogen lengthens QT interval, a marker of increased risk of ventricular tachyarrhythmias. We have shown that testosterone and progesterone in physiological concentration activate KCNQ1 channels via membrane-delimited sex hormone receptor/eNOS pathways to shorten the action potential duration. Mitochondrial K+ channels are also involved in the protection of cardiac muscle. Testosterone and 17ß-estradiol directly activate mitochondrial inner membrane K+ channels (Ca2+ activated K+ channel (KCa channel) and ATP-sensitive K+ channel (KATP channel)) that are involved in ischemic preconditioning and cardiac protection. During pregnancy, uterine blood flow increases to support fetal growth and development. It has been reported that 17ß-estradiol directly activates large-conductance Ca2+-activated K+ channel (BKCa channel) attenuating arterial contraction. Furthermore, 17ß-estradiol increases expression of BKCa channel ß1 subunit which enhances BKCa channel activity by DNA demethylation. These findings are useful for understanding the mechanisms of sex or generation-dependent differences in the physiological and pathological functions of muscles, and the mechanisms of drug actions.


Assuntos
Fenômenos Eletrofisiológicos/fisiologia , Estradiol/fisiologia , Contração Muscular/fisiologia , Músculos/metabolismo , Músculos/fisiologia , Canais de Potássio/metabolismo , Canais de Potássio/fisiologia , Progesterona/fisiologia , Testosterona/fisiologia , Animais , Humanos
15.
Br J Pharmacol ; 175(17): 3435-3452, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29745425

RESUMO

BACKGROUND AND PURPOSE: To date, proposed in silico models for preclinical cardiac safety testing are limited in their predictability and usability. We previously reported a multi-scale heart simulation that accurately predicts arrhythmogenic risk for benchmark drugs. EXPERIMENTAL APPROACH: We created a comprehensive hazard map of drug-induced arrhythmia based on the electrocardiogram (ECG) waveforms simulated under wide range of drug effects using the multi-scale heart simulator described here, implemented with cell models of human cardiac electrophysiology. KEY RESULTS: A total of 9075 electrocardiograms constitute the five-dimensional hazard map, with coordinates representing the extent of the block of each of the five ionic currents (rapid delayed rectifier potassium current (IKr ), fast (INa ) and late (INa,L ) components of the sodium current, L-type calcium current (ICa,L ) and slow delayed rectifier current (IKs )), involved in arrhythmogenesis. Results of the evaluation of arrhythmogenic risk based on this hazard map agreed well with the risk assessments reported in the literature. ECG databases also suggested that the interval between the J-point and the T-wave peak is a superior index of arrhythmogenicity when compared to the QT interval due to its ability to characterize the multi-channel effects compared with QT interval. CONCLUSION AND IMPLICATIONS: Because concentration-dependent effects on electrocardiograms of any drug can be traced on this map based on in vitro current assay data, its arrhythmogenic risk can be evaluated without performing costly and potentially risky human electrophysiological assays. Hence, the map serves as a novel tool for use in pharmaceutical research and development.


Assuntos
Arritmias Cardíacas/fisiopatologia , Ventrículos do Coração/fisiopatologia , Canais Iônicos/antagonistas & inibidores , Modelos Biológicos , Adulto , Arritmias Cardíacas/induzido quimicamente , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Eletrocardiografia , Análise de Elementos Finitos , Humanos
16.
Cell Stem Cell ; 22(1): 91-103.e5, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29276141

RESUMO

Direct cardiac reprogramming holds great promise for regenerative medicine. We previously generated directly reprogrammed induced cardiomyocyte-like cells (iCMs) by overexpression of Gata4, Mef2c, and Tbx5 (GMT) using retrovirus vectors. However, integrating vectors pose risks associated with insertional mutagenesis and disruption of gene expression and are inefficient. Here, we show that Sendai virus (SeV) vectors expressing cardiac reprogramming factors efficiently and rapidly reprogram both mouse and human fibroblasts into integration-free iCMs via robust transgene expression. SeV-GMT generated 100-fold more beating iCMs than retroviral-GMT and shortened the duration to induce beating cells from 30 to 10 days in mouse fibroblasts. In vivo lineage tracing revealed that the gene transfer of SeV-GMT was more efficient than retroviral-GMT in reprogramming resident cardiac fibroblasts into iCMs in mouse infarct hearts. Moreover, SeV-GMT improved cardiac function and reduced fibrosis after myocardial infarction. Thus, efficient, non-integrating SeV vectors may serve as a powerful system for cardiac regeneration.


Assuntos
Reprogramação Celular , Vetores Genéticos/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Vírus Sendai/genética , Potenciais de Ação , Animais , Animais Recém-Nascidos , Linhagem da Célula , Proliferação de Células , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Humanos , Camundongos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fatores de Transcrição/metabolismo , Transgenes , Vírion/metabolismo
17.
Stem Cell Reports ; 9(5): 1406-1414, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-28988990

RESUMO

Cardiac regenerative therapies utilizing human induced pluripotent stem cells (hiPSCs) are hampered by ineffective large-scale culture. hiPSCs were cultured in multilayer culture plates (CPs) with active gas ventilation (AGV), resulting in stable proliferation and pluripotency. Seeding of 1 × 106 hiPSCs per layer yielded 7.2 × 108 hiPSCs in 4-layer CPs and 1.7 × 109 hiPSCs in 10-layer CPs with pluripotency. hiPSCs were sequentially differentiated into cardiomyocytes (CMs) in a two-dimensional (2D) differentiation protocol. The efficiency of cardiac differentiation using 10-layer CPs with AGV was 66%-87%. Approximately 6.2-7.0 × 108 cells (4-layer) and 1.5-2.8 × 109 cells (10-layer) were obtained with AGV. After metabolic purification with glucose- and glutamine-depleted and lactate-supplemented media, a massive amount of purified CMs was prepared. Here, we present a scalable 2D culture system using multilayer CPs with AGV for hiPSC-derived CMs, which will facilitate clinical applications for severe heart failure in the near future.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Cultura Primária de Células/métodos , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Meios de Cultura/química , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Miócitos Cardíacos/fisiologia , Cultura Primária de Células/instrumentação
18.
J Pharmacol Sci ; 134(2): 75-85, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28615142

RESUMO

Human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes hold great potentials to predict pro-arrhythmic risks in preclinical cardiac safety screening, although the hiPSC cardiomyocytes exhibit rather immature functional and structural characteristics, including spontaneous activity. Our physiological characterization and mathematical simulation showed that low expression of the inward-rectifier potassium (IK1) channel is a determinant of spontaneous activity. To understand impact of the low IK1 expression on the pharmacological properties, we tested if transduction of hiPSC-derived cardiomyocytes with KCNJ2, which encodes the IK1 channel, alters pharmacological response to cardiac repolarization processes. The transduction of KCNJ2 resulted in quiescent hiPSC-derived cardiomyocytes, which need pacing to elicit action potentials. Significant prolongation of paced action potential duration in KCNJ2-transduced hiPSC-derived cardiomyocytes was stably measured at 0.1 µM E-4031, although the same concentration of E-4031 ablated firing of non-treated hiPSC-derived cardiomyocytes. These results in single cells were confirmed by mathematical simulations. Using the hiPSC-derived cardiac sheets with KCNJ2-transduction, we also investigated effects of a range of drugs on field potential duration recorded at 1 Hz. The KCNJ2 overexpression in hiPSC-derived cardiomyocytes may contribute to evaluate a part of QT-prolonging drugs at toxicological concentrations with high accuracy.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Bloqueadores dos Canais de Potássio/efeitos adversos , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Potenciais de Ação/efeitos dos fármacos , Arritmias Cardíacas/induzido quimicamente , Avaliação Pré-Clínica de Medicamentos/métodos , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Modelos Biológicos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Técnicas de Patch-Clamp , Piperidinas/efeitos adversos , Piridinas/efeitos adversos
19.
J Physiol ; 595(14): 4695-4723, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28516454

RESUMO

KEY POINTS: This study represents a first step toward predicting mechanisms of sex-based arrhythmias that may lead to important developments in risk stratification and may inform future drug design and screening. We undertook simulations to reveal the conditions (i.e. pacing, drugs, sympathetic stimulation) required for triggering and sustaining reentrant arrhythmias. Using the recently solved cryo-EM structure for the Eag-family channel as a template, we revealed potential interactions of oestrogen with the pore loop hERG mutation (G604S). Molecular models suggest that oestrogen and dofetilide blockade can concur simultaneously in the hERG channel pore. ABSTRACT: Female sex is a risk factor for inherited and acquired long-QT associated torsade de pointes (TdP) arrhythmias, and sympathetic discharge is a major factor in triggering TdP in female long-QT syndrome patients. We used a combined experimental and computational approach to predict 'the perfect storm' of hormone concentration, IKr block and sympathetic stimulation that induces arrhythmia in females with inherited and acquired long-QT. More specifically, we developed mathematical models of acquired and inherited long-QT syndrome in male and female ventricular human myocytes by combining effects of a hormone and a hERG blocker, dofetilide, or hERG mutations. These 'male' and 'female' model myocytes and tissues then were used to predict how various sex-based differences underlie arrhythmia risk in the setting of acute sympathetic nervous system discharge. The model predicted increased risk for arrhythmia in females when acute sympathetic nervous system discharge was applied in the settings of both inherited and acquired long-QT syndrome. Females were predicted to have protection from arrhythmia induction when progesterone is high. Males were protected by the presence of testosterone. Structural modelling points towards two plausible and distinct mechanisms of oestrogen action enhancing torsadogenic effects: oestradiol interaction with hERG mutations in the pore loop containing G604 or with common TdP-related blockers in the intra-cavity binding site. Our study presents findings that constitute the first evidence linking structure to function mechanisms underlying female dominance of arousal-induced arrhythmias.


Assuntos
Nível de Alerta/fisiologia , Arritmias Cardíacas/fisiopatologia , Modelos Biológicos , Agonistas Adrenérgicos beta/farmacologia , Animais , Antiarrítmicos/farmacologia , Estradiol/farmacologia , Canais de Potássio Éter-A-Go-Go/fisiologia , Feminino , Cobaias , Isoproterenol/farmacologia , Masculino , Simulação de Acoplamento Molecular , Miócitos Cardíacos/fisiologia , Fenetilaminas/farmacologia , Caracteres Sexuais , Sulfonamidas/farmacologia
20.
Ann Transl Med ; 5(4): 88, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28275633
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...